
Informatica Economică vol.13, no 3/2009 75

Survey on Multimedia Technologies for Mobile Learning Applications

Paul POCATILU, Cătălin BOJA
Economic Informatics Department,

Academy of Economic Studies, Bucharest, Romania
ppaul@ase.ro, catalin.boja@ie.ase.ro

Mobile technologies are developing very fast. This paper presents a survey on multimedia
technologies for mobile learning applications, focusing on multimedia programming
techniques for Windows Mobile, Symbian, and Java ME.
Keywords: multimedia, mobile devices, mobile applications, mobile learning

1 Introduction
Mobile learning is implemented using
different technologies and platforms. Each
implementation has specific characteristics in
terms of user interface and content and
influences the quality management process.
The software required for mobile learning

process is a Web browser or a specific
application, that can be standalone or a client
application.
Web-based platforms are very common in
mobile learning process. Figure 1 depicts the
architecture of this platform.

Fig. 1. Web-based mobile learning platforms architecture

The advantages of using Web-based mobile
learning platform are:
 User’s minimal effort to set up the

application;
 The user doesn’t need to learn how to

use a new application; the client is a
simple mobile Web browser (like Pocket
Internet Explorer of Opera Mobile);

 E-learning content can be easily updated
on the server.

There are also some disadvantages:
 Not so rich user interface (browser-

based);
 Multimedia content is limited;
 Possible additional costs for traffic usage.
Distributed platforms have a similar
architecture as Web-based platforms, but the
client application is a rich application and not
a simple mobile Web browser. The
advantages of this platform are:
 Rich user interface;
 Support for multimedia content;

 E-learning content can be easily updated
on the server;

There are also some disadvantages:
 The user need to install and setup the

client application;
 The user have to learn how to use the

application;
 Possible additional costs for traffic usage.
Standalone applications do not require
network access. They are similar to the client
applications for distributed platforms. The
main disadvantage is that the update of
content needs access to device.
Errors and applications failures influence the
learning process. Distributed applications and
Web-based requires more test because of
network access. The test plans need to
include use cases on various hardware
platforms, operating systems, networks
bandwidths in order to cover a large number
of scenarios.
Almost all mobile operating systems have

Internet/Network
Mobile

Web
Browser

M-

learning
Server

M-
learning
content

76 Informatica Economică vol.13, no 3/2009

support for multimedia applications
development. Some technologies and libraries
exist in desktop versions (like Open GL,
DirectX etc.), other are specific to some
operating system [2], [3], [4], [5].

Fig. 2 Multimedia system [1]

Multimedia m-applications (figure 2) access
audio, graphics and media API through
operating system or third party libraries. These
API communicate with multimedia related
hardware through device drivers.
The display resolution, audio and video system,
3D support, and operating system influence the
multimedia application development for mobile
devices.
The audio and video resources involve playback
and recording capabilities.

2 Java Micro Edition (Java ME)
Java Micro Edition platform is intended for all
mobile devices that have limited hardware and
software resources. In order to allow the
development of application for these devices,
this platform has limited framework support
comparing to its big brother, Java Standard
Development Kit. Despite the early
characteristics of devices, present and future
mobile technologies allow software developers
to design and implement rich multimedia
content. In order to support this kind of
resources, Java ME platform includes a
package, the Mobile Media API (MMAPI), [6-
7], that is flexible enough to run with many
types of protocols and multimedia formats, as
MP3, MIDI for audio, MPEG-4 for video and
JPEG, PNG, BMP, SVG for pictures. The
MMAPI framework has been designed to run
on any J2ME-based virtual machine,
including the CDC and CLDC virtual
machines. This standard Java specification
has been defined by the Java Community

Process (JCP) in JSR 135, [7].
At the core of the MMAPI package there are
two concepts that describe multimedia
processing:
 Protocol handling refers to the process of

reading data from a source, as local files,
from a streaming server or from device
components, into a media-processing
system;

 Content handling refers to the process of
decoding the media data and rendering it to
an output interface.

Figure 3 describes the three high-level object
types, Data Source, Player and Manager, that
the API provides, in order to implement the two
concepts.

Fig. 3 The MMAPI Architecture.

The relation between these components is based
on the fact that the Manager object is used to
create Player entities from DataSources or Input
Streams. Once created, Player class provides
methods that will give control over the
multimedia resource.

2.1 Audio
Different audio formats are managed by the
MMAPI using:
 Manager playTone() method that generates

simple tones, characterized by frequency
and duration; this is the simple audio media
format that can be managed and its role is to
provide basic audio capabilities to mobile
devices; the following sequence play a tone
for 2000 milliseconds at volume 50

...
try {
 Manager.playTone()(ToneControl.C4,
4000, 100);
}

Data Source Player

Manager

Files

Streams

Web

Devices

Protocol Handling Content Handling

creates

provides

Informatica Economică vol.13, no 3/2009 77

catch(MediaException me) {
}
...

 Player object, created to access audio files

stored on the device or on an Web server;
the next code sequence gets an MP3 file
over the network and plays it:

try{
 String mp3="http://myserver.com/" +
"media/music.mp3";
 Player p = Manager.createPlayer(mp3);
 p.start();
}
catch (IOException x) {
 ...
} catch (MediaException x) {
 ...
}

 InputStreams and Player classes to access

device stored audio resources, as MP3 files;
media can be stored as a resource within
the JAR file or in a RecordStore:

//from JAR file
InputStream is1 =
getClass().getResourceAsStream("m.mp3");
Player p1 = Manager.createPlayer(is,
"audio/mpeg");
P1.start();

//from RMS
InputStream is2 =
 new ByteArrayInputStream(
 myRecordStore.getRecord(id));
Player p2 = Manager.createPlayer(
 is2, "audio/mpeg");
p2.start();

2.2 Graphics and Animation
The concept of graphics and animation
management is direct related to the framework
elements that allow developers to control device
display. One core element of the J2ME platform
used in this scope is the Canvas class, [9],
defined in the javax.microedition.lcdui package,
that lets an application draw screens using the
low-level user-interface API.
The next code sequence is used to draw an
image on the device display, creating a splash
screen.
protected void paint(Graphics g) {
 Image logo;
 try{
 logo = Image.createImage(
"/images/logo.jpg");

 g.setColor(0,0, 0);
 g.fillRect(0, 0,
 g.drawImage(logo, 0, 0, 0);
 g.setColor(200,0,0);

g.setFont(Font.getFont(Font.FACE_SYSTEM,
Font.STYLE_BOLD,Font.SIZE_LARGE));

 g.drawString("My Agenda v1.0", 5,
30,0);
 g.setColor(0,0,0);
 g.drawLine(5,50, this.getWidth(),
50);
 }
 catch(Exception err){
 ...
 }
 }

The image is load from the JAR and figure 4
shows the result.

Fig. 4 Drawing image on mobile device display

The limitations of Canvas class is generated by
a lack of control over when a canvas repaints
itself or over how quickly key and pointer
events are received by the object. In order to
overcome this drawback and to provide
support for software gaming industry, it was
designed the GameCanvas class, that extends
the Canvas class.
The role of the GameCanvas class is to
provide efficient resource management for
animation and event handling. Basic
elements of an animation and their classes
are:
 animation background implemented by

the TiledLayer class; the background is
viewed as a grid with custom dimensions;
this provides an efficient and simple way

78 Informatica Economică vol.13, no 3/2009

to manage interactions between game
components and dynamic generation of
the environment; based on few resources,
as the background elements in figure 5,
resources are multiplied and put in the
grid; the following code sequence,
creates a 6x7 grid and populates it with
32x32 pixels graphical elements, that
were extracted from a PNG image

 Image imgBack, imgButterfly;
 int background[][]= {
 {0,4,4,0,0,0,4},
 {4,0,3,0,0,4,4},
 {0,0,0,4,0,4,0},
 {1,0,2,2,0,1,1},
 {2,1,0,0,2,1,1},
 {0,0,1,1,2,1,0}
 };
 TiledLayer tlBackground;
 imgBack = Image.createImage(
"/images/bk.png");
 tlBackground = new TiledLayer(6,7,
imgBack, 32, 32);
 for(int i=0;i<6;i++)
 for(int j = 0;j<7; j++)
 background.setCell(j, i, fundal[i][j]);

 animated elements, defined as Sprite

objects; this class is designed to manage
animation sequences independently from
the main thread; the next sequence
creates a Sprite object based on
butterfly.png, described in figure 5; the
sprite animates the butterfly by changing
in a predefined sequence the four images;

Image imgButterfly=Image.createImage("
/images/fluture.png");
Sprite sButterfly; = new Sprite(
imgFluture, 32,32);

int flight[] = {1, 2, 3, 3, 2, 1, 0};

sButterfly.setFrameSequence(flight);
sButterfly.setRefPixelPosition(8, 8);

 LayerManager class that provides game

developer methods to manage animation
elements; usign a LayerManager object,
animation elements are interconnected
and it is decided how and in which
context they are made visible; next
sequence puts together, in a
GameCanvas, both the background and
the sprite;

LayerManager lm = new LayerManager();
lm.append(sButterfly);
sFluture.setPosition(100,150);
lm.append(tlBackground);
lm.paint(this.getGraphics(), 0, 0);
lm.setViewWindow(0,0,latime,inaltime-
20);
flushGraphics();

butterfly.png
(sprite images)

background.png
(background
elements)

Fig. 5 Game application in J2ME and its

resources

On advanced mobile devices that incorporate a
camera, MMAPI includes support for accessing
it from code. For that the player is created using
a capture://video locator. By default, the image
format used to store the camera capture is PNG.
The next code sequence allows the user to
capture an image by camera:

try {
player =
Manager.createPlayer("capture://video");
player.realize();
videoControl = (VideoControl)
(player.getControl("VideoControl"));
if (videoControl != null) {
videoControl.initDisplayMode(VideoContro
l.USE_DIRECT_VIDEO, this);
}
}
catch (IOException ioe) {
...
}
catch (MediaException me) {
...
}
catch (SecurityException se) {
...
}
if(player!=null){
try{

Informatica Economică vol.13, no 3/2009 79

byte[] pngImage =
videoControl.getSnapshot(null);
image=Image.createImage(pngImage,0,pngIm
age.length);
}catch(MediaException me){
...
}
}

The key elements from the above sequence are:
 create Player object
player =
Manager.createPlayer("capture://video");

 getControl over the resource
videoControl = (VideoControl)
(player.getControl("VideoControl"));

 getSnapShot to get the captured image.
byte[] pngImage =
videoControl.getSnapshot(null);

2.3 Video
J2ME provides video management with the
VideoControl interface. A reference to the video
resource is provided by the Player class and its
getControl() method.
The below sequence plays a video file on
mobile device:

...
Player p;
VideoControl vc;
try {
 p = Manager.createPlayer("http://
myserver.com/movie.mpg");
 p.realize();
 // get video control
 vc = (VideoControl)p.getControl("
VideoControl");

 //get a GUI to display the video
 Item videoItem = (Item)video.initDisp
layMode(
 VideoControl.USE_GUI_PRIMITIVE,null);

 //append the GUI to a form
 videoForm.append(videoItem);
 p.start();
}
catch(IOException ioe) {
}
catch(MediaException me) {
}
...

3 Windows Mobile
DirectShow is available starting with Windows
Mobile 5. This is technology is based on COM.
It is highly recommended to play the media files
in a separate thread.

3.1 Audio
Audio files can be played using:
• standard API function,
• a shell function (Windows Mobile 6 and up

only)
• DirectShow
• third-party API
The PlaySound function is limited to PCM
WAV formats. This call plays the specified file.
If an error occurs, bResult will be set to FALSE:

BOOL bResult =
PlaySound(L"\\Windows\\Alarm5.wav",
NULL, SND_FILENAME);

For other formats, SndPlaySync function can be
used. This function is related to Windows
Mobile 6 shell. A sample call of this function is:

HRESULT hr =
SndPlaySync(L"\\Windows\\Ring-
WindowsMobile .wma", 0);

DirectShow can be used to play audio files.
Depending on installed codecs, various formats
can be played. The following code is used to
play an audio file using DirectShow:

CComPtr<IGraphBuilder> pGraphBuilder;
CComPtr<IMediaControl> pMediaControl;
CComPtr<IMediaEvent> pMediaEvent;

LPCWSTR fisAudio = L"\\My
Documents\\audio2.wav";

HRESULT hr = S_OK;
CoInitialize(NULL);

//Here we create the filter graph
manager
hr =
pGraphBuilder.CoCreateInstance(CLSID_Fil
terGraph);

if (hr != S_OK)
{
 // error handling
 return;
}

hr = pGraphBuilder->QueryInterface(
IID_IMediaControl, (void
**)&pMediaControl);
hr = pGraphBuilder-> QueryInterface(
IID_IMediaEvent, (void **)&pMediaEvent);

//Render the media file
hr = pGraphBuilder->RenderFile(fisAudio,
NULL);

80 Informatica Economică vol.13, no 3/2009

if (hr == S_OK)
{
 hr = pMediaControl->Run();

 if (hr = S_OK)
 {
 long lEvCode = 0;
 pMediaEvent->WaitForCompletion(
 INFINITE, &lEvCode);
 }
}
else
{
 TCHAR temp[50];
 swprintf(temp, L"%s : %x", L"Eroare
redare audio", hr);
 MessageBox(hWnd, temp, L"Eroare!",
 MB_OK | MB_ICONERROR);
}

CoUninitialize();

The thread waits until the audio file ends so that
this code needs to be in a separate thread.
There is a third-party API developed that allows
playing sound.

3.2 Graphics and Animation
The basic drawing primitives are provided by
the GDI. Usually the drawing is handled on
WM_PAINT message.
The following listing demonstrates how to use
them to draw shapes and text using GDI API:
Rectangle(hdc,r.left,r.top,r.right,r.bot
tom);

//draw a rectangle
//fill the rectangle
FillRect (hdc,&r, g_hBrush);
//set background color
SetBkColor (hdc, 0x0000ff00);
//draw text
DrawText(hdc,L"DrawText Sample", -1, &r,
DT_CENTER | DT_VCENTER);
//select another brush
SelectObject(hdc, g_hBrush);
//draw a circle
Ellipse(hdc, (r.right - r.left - 50)/2,
r.top, (r.right - r.left - 50)/2 + 50,
50);
//set text align relative to reference
//point for ExtTextOut
SetTextAlign(hdc, TA_CENTER);
//draw text
ExtTextOut(hdc, (r.right - r.left)/2,
190, 0, NULL, text, lstrlen(text),
NULL);

There is support for 3D graphics using Direct3D
Mobile. There are limitations of Direct3D
Mobile compared to Direct3D due to hardware
constraints.
First, a device has to be initialized and its
properties to be set. The device will be used to
render the 3D graphics based on objects
properties (coordinates and color). The distance
to the objects, the view angle, the light, the view
window and other properties can be controlled.
The following code initializes the device and the
pyramid that will be rendered:

PresentParameters presentParams = new PresentParameters();
presentParams.Windowed = true;
presentParams.SwapEffect = SwapEffect.Discard;

device = new Device(
 0, // numar device
 DeviceType.Default, // configuratia
 this, // fereastra parinte
 CreateFlags.None, // parametri de creare
 presentParams); // parametri de prezentare

// camera settings
device.Transform.View = Matrix.LookAtLH(
 new Vector3(0.0f, 0.0f, -2.0f), // camera position
 new Vector3(0.0f, 0.0f, 0.0f), // camera focus
 new Vector3(0.0f, 0.5f, 0.0f) // camera up
);

// set up the projection
device.Transform.Projection =
 Matrix.PerspectiveFovLH(
 (float)Math.PI / 4, // angle
 1.0f, // scaling factor
 1.0f, // near Z plane
 100.0f // further Z plane
);
//display objects even on the hidden side

Informatica Economică vol.13, no 3/2009 81

device.RenderState.CullMode = Cull.None;
//manually control the light
device.RenderState.Lighting = false;

//pyramid initialization (coordinates and color)
vertices[0] = new CustomVertex.PositionColored(0.0f, 0.0f, -0.5f,
Color.Yellow.ToArgb());
vertices[1] = new CustomVertex.PositionColored(0.5f, 0.5f, 0.0f,
Color.Green.ToArgb());
vertices[2] = new CustomVertex.PositionColored(-0.5f, 0.5f, 0.0f,
Color.Red.ToArgb());
vertices[3] = new CustomVertex.PositionColored(0.0f, 0.0f, -0.5f,
Color.Yellow.ToArgb());
vertices[4] = new CustomVertex.PositionColored(0.0f, -0.5f, 0.0f,
Color.Blue.ToArgb());
vertices[5] = new CustomVertex.PositionColored(-0.5f, 0.5f, 0.0f,
Color.Red.ToArgb());
vertices[6] = new CustomVertex.PositionColored(0.0f, 0.0f, -0.5f,
Color.Yellow.ToArgb());
vertices[7] = new CustomVertex.PositionColored(0.0f, -0.5f, 0.0f,
Color.Blue.ToArgb());
vertices[8] = new CustomVertex.PositionColored(0.5f, 0.5f, 0.0f,
Color.Green.ToArgb());
vertices[9] = new CustomVertex.PositionColored(0.0f, -0.5f, 0.0f,
Color.Blue.ToArgb());
vertices[10] = new CustomVertex.PositionColored(0.5f, 0.5f, 0.0f,
Color.Green.ToArgb());
vertices[11] = new CustomVertex.PositionColored(-0.5f, 0.5f, 0.0f,
Color.Red.ToArgb());
// initialize the buffer (3D points)
vertBuffer = new VertexBuffer(
 typeof(CustomVertex.PositionColored), // tip buffer
 vertices.Length, // number of points
 device, // device
 Usage.WriteOnly, // access type
 CustomVertex.PositionColored.Format, // point types
 Pool.SystemMemory); // memory used

// fill the buffer with data
vertBuffer.SetData(vertices, 0, LockFlags.None);
}

The code that draws and rotates the pyramid
is:
//set black background
device.Clear(ClearFlags.Target,
Color.Black, 1.0f, 0);
device.BeginScene();

// set the buffer
device.SetStreamSource(0, vertBuffer,
0);

// increase the rotation angle
unghiRotire += pasRotire;

device.Transform.World =
Matrix.RotationYawPitchRoll(0f,
unghiRotire, 0f);

//draw using triangles
device.DrawPrimitives(PrimitiveType.Tria
ngleList, 0, 3);
device.EndScene();
device.Present();

Figure 6 shows the capture of a mobile device

screen running the Direct3D Mobile code
presented in this section.

Fig. 6 Direct3D Mobile example

3.3 Video
Video can be played on Windows Mobile based

82 Informatica Economică vol.13, no 3/2009

devices using DirectShow or Windows Media
Player control. These methods require the use of
COM technologies.
The code is similar to audio playback using

DirectShow, for video playback a window is
required. The following code initializes the filter
graph manager and the player window and plays
a video file in full screen:

CComPtr<IGraphBuilder> pGraphBuilder;
CComPtr<IMediaControl> pMediaControl;
CComPtr<IVideoWindow> pVidWindow;
CComPtr<IMediaEvent> pMediaEvent;

LPCWSTR fisVideo = L"\\My Documents\\video4.3gp";

HRESULT hr;

CoInitialize(NULL);

// Initialize the filter graph manager
hr = pGraphBuilder.CoCreateInstance(CLSID_FilterGraph);

if (hr != S_OK)
{

TCHAR temp[50];
 swprintf(temp, TEXT("%s : %x"), TEXT("Eroare initializare filtru!"), hr);
 MessageBox(hWnd, temp, TEXT("Eroare!"), MB_OK | MB_ICONERROR);
 return;
}
//initialize the media control
hr = pGraphBuilder->QueryInterface(IID_IMediaControl, (void **)&pMediaControl);
//initialize the video window
hr = pGraphBuilder->QueryInterface(IID_IVideoWindow, (void **)&pVidWindow);
//initialize the media event
hr = pGraphBuilder->QueryInterface(IID_IMediaEvent, (void **)&pMediaEvent);

//video file rendering
hr = pGraphBuilder->RenderFile(fisVideo, NULL);

if (hr == S_OK)
{
 // Video window settings

pVidWindow->put_Owner((OAHWND)hWnd);
 pVidWindow->put_WindowStyle(WS_CHILD | WS_CLIPSIBLINGS);
 //Play in full screen

pVidWindow->put_FullScreenMode(OATRUE);

 //start playing the video
 hr = pMediaControl->Run();

 if (hr == S_OK)
 {
 long lEventCode = 0;
 //wait until video end
 pMediaEvent->WaitForCompletion(INFINITE, &lEventCode);
 }

}
else
{
 TCHAR temp[50];
 swprintf(temp, TEXT("%s : %x"), TEXT("Eroare redare video"), hr);
 MessageBox(hWnd, temp, TEXT("Eroare!"), MB_OK | MB_ICONERROR);
}

CoUninitialize();

The video playback has to take place in a
separate thread in order to keep the user
interface functionally.

4 Symbian OS

Informatica Economică vol.13, no 3/2009 83

4.1 Audio
The Symbian audio component allows playing
and recording audio files, depending on installed
codecs.
Audio files can be played using
CMdaAudioPlayerUtility class. Applications
that use it need a helper class that implements

MMdaAudioPlayerCallback interface in
order to receive notification about the player.
Audio streams can be played using the
CMdaAudioOutputStream class.
The following code implements a player
class that can be used for audio files:

#include <MdaAudioSamplePlayer.h>

enum TState {EIsNotReady, EIsReady, EIsPlaying };

class CAudioPlayer: public CBase, public MMdaAudioPlayerCallback
{
 void CAudioPlayerL(const TDesC& aFisier);

 TState iStare;
 CMdaAudioPlayerUtility* iPlayer;
public:
 void ConstructL(const TDesC& aFisierAudio);
 static CAudioPlayer* NewL(const TDesC& aFisierAudio);
 static CAudioPlayer* NewLC(const TDesC& aFisierAudio);
 ~CAudioPlayer();
 void Play();
 //void Stop();

//void Pause();
//callback functions

 void MapcInitComplete(TInt aEroare, const TTimeIntervalMicroSeconds& aDur);
 void MapcPlayComplete(TInt aEroare);
};

CAudioPlayer* CAudioPlayer::NewL(const TDesC& aFisierAudio)
{
 CAudioPlayer* self = NewLC(aFisierAudio);
 CleanupStack::Pop(self);
 return self;
}

CAudioPlayer* CAudioPlayer::NewLC(const TDesC& aFisierAudio)
{
 CAudioPlayer* self = new (ELeave) CAudioPlayer();
 CleanupStack::PushL(self);
 self->ConstructL(aFisierAudio);
 return self;
}

void CAudioPlayer::ConstructL(const TDesC& aFisierAudio)
{
 iPlayer = CMdaAudioPlayerUtility::NewFilePlayerL(aFisierAudio, *this);
}
//the audio will play if the player is ready
void CAudioPlayer::Play()
{
 if(iStare == EIsReady)
 {
 iStare = EIsPlaying;
 iPlayer->Play();
 }
}
//Not shown Stop, Pause, SetPosition, GetPosition, volume control
void CAudioPlayer::MapcPlayComplete(TInt aEroare)
{
 iStare = aEroare ? EIsNotReady : EIsReady;
}

void CAudioPlayer::MapcInitComplete(TInt aEroare, const TTimeIntervalMicroSeconds&)
{

84 Informatica Economică vol.13, no 3/2009

 iStare = aEroare ? EIsNotReady : EIsReady;
}
//releas the player
CAudioPlayer::~CAudioPlayer()
{
 delete iPlayer;
 iPlayer = NULL;
}

The audio file can be stopped, paused and
resumed. Also it is possible to position in the
audio file. The following code is used to play an
audio file using the class above:

iPlayer = CAudioPlayer::NewL(_L
("C:\\System\\Data\\audio2.wav"));

if (iPlayer)

iPlayer->Play();

4.2 Graphics and Animation
Drawing is similar to other programming
platforms. It is necessary a device context that
will be used to draw on the display. The
following code is used to draw some basic
shapes and text on the application main
window:

CWindowGc& gc = SystemGc();

gc.SetPenStyle(
CGraphicsContext::ENullPen);

gc.SetBrushColor(KRgbYellow);
gc.SetBrushStyle(
CGraphicsContext::ESolidBrush);
gc.DrawRect(aRect);

TRect rect = aRect;
rect.Shrink(20, 20);
gc.SetBrushColor(KRgbRed);
gc.DrawEllipse(rect);

TPoint point(10, 10);
gc.UseFont(CEikonEnv::Static()-
>NormalFont());
gc.DrawTextVertical(_L("DrawTextVertical
"), point, 0);
gc.DiscardFont();

Usually this code is called from the Draw
function, called when the screen needs to be
painted.

Fig. 7 Using graphics on Symbian phone

Figure 7 depicts s a capture of a Symbian phone
screen showing the result of running the code
above.
Also multimedia framework has support for
image processing.

4.3 Video
Symbian's multimedia framework has support
for playing and recording videos. The source
can be a file on disk or a stream of data. The
architecture is similar to audio playback, an
observer class need to be created to receive the
framework events. Additionally a window is
needed to playback the video.
CVideoPlayerUtility is the class used for video
playback and the interface
MVideoPlayerUtilityObserver is required to
handle the playback events through callback
functions.
The following class can be used to play video
files:

class CVideoPlayer : public CBase ,public MVideoPlayerUtilityObserver
{

CVideoPlayerUtility* iPlayer;
CVideoPlayer ();

public:

 void ConstructL(const CCoeControl& aView);

Informatica Economică vol.13, no 3/2009 85

 static CVideoPlayer * NewL(const CCoeControl& aView);
 void PlayL(const TDesC& aFisierVideo);
 void Stop();
 ~CVideoPlayer();
 //callback methods
 void MvpuoOpenComplete(TInt aError);
 void MvpuoPrepareComplete(TInt aError);
 void MvpuoFrameReady(CFbsBitmap& aFrame,TInt aError);
 void MvpuoPlayComplete(TInt aError);
 void MvpuoEvent(const TMMFEvent& aEvent);

};
void CVideoPlayer::MvpuoPrepareComplete(TInt aErr)
{
 if (KErrNone == aErr)
 {
 iPlayer->Play();
 }
 else
 {
 iPlayer->Close();
 }
}
void CVideoPlayer::MvpuoEvent(const TMMFEvent&) {}
void CVideoPlayer::MvpuoPlayComplete(TInt aErr) { }
void CVideoPlayer::MvpuoFrameReady(CFbsBitmap& ,TInt) {}
void CVideoPlayer::MvpuoOpenComplete(TInt aErr)
{

if (KErrNone == aErr) { iPlayer->Prepare(); }
}
void CVideoPlayer::Stop()
{
 iPlayer->Stop();
}
void CVideoPlayer::PlayL(const TDesC& aFisierVideo)
{
 iPlayer->Close();
 iPlayer->OpenFileL(aFisierVideo);
}
CVideoPlayer::CVideoPlayer () {}
CVideoPlayer::~CVideoPlayer ()
{
 if (iPlayer != NULL)
 {
 delete iPlayer;
 iPlayer = NULL;
 }
}
CVideoPlayer * CVideoPlayer::NewL(const CCoeControl& aView)
{
 CVideoPlayer * self = new (ELeave) CVideoPlayer ();
 CleanupStack::PushL(self);
 self->ConstructL(aView);
 CleanupStack::Pop();
 return self;
}
//initialize the player
void CVideoPlayer ::ConstructL(const CCoeControl& aView)
{
 TRect rect(aView.PositionRelativeToScreen(),
 TSize(aView.Rect().Width(), aView.Rect().Height()));

 iPlayer = CVideoPlayerUtility::NewL(*this,
 EMdaPriorityNormal,
 EMdaPriorityPreferenceNone,
 aView.ControlEnv()->WsSession(),
 *(aView.ControlEnv()->ScreenDevice()),
 *(aView.DrawableWindow()),

86 Informatica Economică vol.13, no 3/2009

 rect,
 rect);
}

In order to use the video player class, an object
needs to be initialized and to call the PlayL
method:

if (!iVideoPlayer)
iVideoPlayer = CVideoPlayer::NewL(*this-
>iAppContainer);

if (iVideoPlayer)
 iVideoPlayer->PlayL(_L("C:\\video
\\Video000.3gp"));

The player objects need to be released when
finished.
The camera can be used for video playback and
recording, if available.

6 Conclusions
Using operating system native API leads to
faster applications but long development curves
and difficulties on porting applications to other
operating systems.

Acknowledgement
This paper presents some results of the research
project IDEI 2673: Project management
methodologies for the development of mobile
applications in the educational system, financed
within the framework of IDEI research
program.

References
[1] P. Pocatilu and A. Pocovnicu, "Multimedia

for mobile Learning," Proc. of Informatics
in Economy Conference, May 2009, pp.
362-367

[2] Adi Rome et al. Multimedia on Symbian OS

- Inside the Convergence Device, John
Wiley & Sons Ltd, 2008, p. 23

[3] Windows Mobile 5.0 SDK: Multimedia and
Games [Online]. Available:
http://msdn.microsoft.com/en-
us/library/aa454194.aspx (March 2009).

[4] iPhone Reference Library [Online].
Available:
http://developer.apple.com/iphone/library/n
avigation/index.html. (March 2009).

[5] The Developer's Guide|Android Developers
[Online]. Available:
(http://developer.android.com/guide/index.
html (March 2009).

[6] Qusay Mahmoud – The J2ME Mobile
Media API, Sun Developer Network, 2003,
http://developers.sun.com/mobility/midp/ar
ticles/mmapioverview/

[7] JSRs: Java Specification Requests – JSR
135: Mobile Media API, Final release 3,
2006, http://jcp.org/en/jsr/detail?id=135

[8] Bruce Hopkins – Comparing Mobile
Platforms: Java ME and Adobe Flash Lite,
Sun Mobility Tech Tips,
http://blogs.sun.com/mobility_techtips/entr
y/comparing_mobile_platforms_java_me

[9] Eric Giguere - Game Canvas Basics, Sun
Developer Network, 2004,
http://developers.sun.com/mobility/midp/tti
ps/gamecanvas/index.html

Paul POCATILU graduated the Faculty of Cybernetics, Statistics and
Economic Informatics in 1998. He achieved the PhD in Economics in 2003
with thesis on Software Testing Cost Assessment Models. He has published
as author and co-author over 45 articles in journals and over 40 articles on
national and international conferences. He is author and co-author of 10
books, (Software Testing Costs, and Object Oriented Software Testing are
two of them). He is associate professor in the Department of Economic

Informatics of the Academy of Economic Studies, Bucharest. He teaches courses, seminars
and laboratories on Mobile Devices Programming, Economic Informatics, Computer
Programming and Project Management to graduate and postgraduate students. His current
research areas are software testing, software quality, project management, and mobile

Informatica Economică vol.13, no 3/2009 87

application development.

Catalin BOJA is Lecturer at the Economic Informatics Department at the
Academy of Economic Studies in Bucharest, Romania. In June 2004 he has
graduated the Faculty of Cybernetics, Statistics and Economic Informatics
at the Academy of Economic Studies in Bucharest. In March 2006 he has
graduated the Informatics Project Management Master program organized
by the Academy of Economic Studies of Bucharest. He is a team member in
various undergoing university research projects where he applied most of
his project management knowledge. Also he has received a type D IPMA

certification in project management from Romanian Project Management Association which
is partner of the IPMA organization. He is the author of more than 40 journal articles and
scientific presentations at conferences. His work focuses on the analysis of data structures,
assembler and high level programming languages. He is currently holding a PhD degree on
software optimization and on improvement of software applications performance.

	[9] Eric Giguere - Game Canvas Basics, Sun Developer Network, 2004, http://developers.sun.com/mobility/midp/ttips/gamecanvas/index.html

